Nach dem Einschalten beginnt der YDLIDAR G4 sich zu drehen und die Umgebung um sich herum zu scannen. Die Scandistanz beträgt 16 m und das Gerät bietet eine Scanrate von 9.000 Mal pro Sekunde.
Es macht detaillierte Untersuchungen seiner Umgebung und kann die kleinsten Objekte um sich herum lokalisieren. Mit einem hochpräzisen bürstenlosen Motor und einem Encoder-Disc, der auf Lagern montiert ist, dreht es sich reibungslos und hat eine Betriebsdauer von bis zu 500.000 Stunden.
Der G4 ist eine kostengünstige Lösung für Projekte, die Hinderniserkennung, Hindernisvermeidung und/oder simultane Lokalisierung und Kartierung (SLAM) erfordern. Alle YDLIDAR-Produkte sind ROS-ready.
Features
360 Grad 2D-Reichweiten-Scanning
Stabile Leistung, hohe Präzision
16 m Reichweite
Starke Widerstandsfähigkeit gegenüber Umgebungslichtinterferenzen
Bürstenloser Motorantrieb, stabile Leistung
FDA-Lasersicherheitsstandard Klasse I
360 Grad omnidirektionales Scanning, 5-12 Hz adaptive Scanning-Frequenz
OptoMagnetic-Technologie
Drahtlose Datenkommunikation
Scanrate von 9000 Hz
Dokumentation
ROS-Treiber
Ydlidar-Download-Seite
Unten im Abschnitt "Downloads" finden Sie das Datenblatt sowie die Benutzer- und Entwicklungsanleitungen.
Vorübergehende Verzögerung bei der Lieferung von Unitree-Robotern
Wie viele andere Lieferanten erleben auch wir derzeit Verzögerungen bei der Lieferung von Unitree-Robotern. Eine Sendung unseres Lieferanten steckt derzeit im Zoll fest, was leider zu späteren Lieferungen bereits aufgegebener Bestellungen führt.
Wir arbeiten aktiv mit unserem Lieferanten daran, dieses Problem zu lösen, und erwarten in Kürze mehr Klarheit. Leider können wir derzeit jedoch keine festen Zusagen machen. Eine neue Lieferung ist bereits auf dem Weg, wird aber noch etwas Zeit in Anspruch nehmen. Da auch andere Lieferanten mit denselben Herausforderungen konfrontiert sind, ist ein Wechsel zu einem anderen Anbieter derzeit keine schnellere Lösung. Unsere oberste Priorität ist die Lieferung der bestehenden Bestellungen.
Falls Sie Fragen haben oder Ihre Bestellung aktualisieren möchten, zögern Sie bitte nicht, unseren Kundenservice zu kontaktieren. Wir halten Sie über weitere Entwicklungen auf dem Laufenden.
Die Unitree Go2-Serie besteht aus vierbeinigen Robotern für die Forschung und Entwicklung. Entwicklung autonomer Systeme in den Bereichen Mensch-Roboter-Interaktion (HRI), SLAM & Transport. Aufgrund der vier Beine und des 12DOF kann dieser Roboter eine Vielzahl unterschiedlicher Gelände bewältigen. Der Go2 verfügt über einen perfektionierten Antrieb & Power-Management-System, das eine Geschwindigkeit (je nach Ausführung) von bis zu 3,7 m/s oder 11,88 km/h bei einer Betriebszeit von bis zu 4 Stunden ermöglicht. Darüber hinaus verfügen die Motoren über ein Drehmoment von 45 N.m am Körper/Oberschenkel und an den Knien, was auch Sprünge oder Backflips ermöglicht.
Features
Super-Erkennungssystem: 4D LIDAR L1
Maximale Laufgeschwindigkeit: ca. 5 m/s
Spitzengelenkdrehmoment: ca. 45 Nm
Wireless-Modul: WiFi 6/Bluetooth/4G
Extrem lange Akkulaufzeit: ca. 2-4 Stunden
Intelligentes Side-Follow-System: ISS 2.0
Technische Daten
Tracking-Modul: Ferngesteuertes oder automatisches Tracking
Frontkamera: Bildübertragungsauflösung 1280 x 720, Sichtfeld 120°, Ultraweitwinkelobjektiv sorgt für satte Klarheit
Frontlampe: Erhellt den Weg vor Ihnen hell
4D LiDAR L1: 360°x90° omnidirektionales Ultraweitwinkel-Scannen ermöglicht automatisches Ausweichen mit kleinem toten Winkel und stabilen Betrieb
12 Kniegelenkmotoren: Stark und kraftvoll, schön und einfach, Brandy neues visuelles Erlebnis
Intercom-Mikrofon: Effektive Kommunikation ohne Szenario-Einschränkungen
Selbstaufrollender Gurt: Einfaches Tragen und Laden von Gegenständen
Stabiler, leistungsfähiger mit fortschrittlichen Geräten: 3D LiDAR, 4G-ESIM-Karte, WiFi 6 mit Dualband, Bluetooth 5.2 für stabile Verbindung und Fernsteuerung
Leistungsstarker Rechenkern: Motion Controller, Hochleistungs-ARM-Prozessor, verbesserter Al-Algorithmus-Prozessor, externes ORIN NX/NANO
Intelligenter Akku: Standard 8000-mAh-Akku, langlebiger 15000-mAh-Akku, Schutz vor Übertemperatur, Überladung und Kurzschluss.
Lautsprecher für die Musikwiedergabe: Hören Sie Musik nach Lust und Laune
Unitree Go2-Varianten
Der Go2 überzeugt nicht nur durch seine technischen Fähigkeiten, sondern auch durch ein modernes und schlankes Design, das ihm einen futuristischen Look verleiht und ihn zu einem echten Hingucker macht. Der Go2 Air ist speziell für Demos und Präsentationen konzipiert. Mit seinen Grundmerkmalen bietet es eine solide Grundlage, um die Bewegungsfähigkeiten und Funktionalität eines vierbeinigen Roboters zu demonstrieren. Wichtig: Der Go2 Air wird ohne Controller geliefert. Dies kann optional erworben werden.
Mit einer leistungsstarken 8-Core-Hochleistungs-CPU bieten Pro und Edu beeindruckende Rechenleistung, die für komplexe Aufgaben und anspruchsvolle Berechnungen erforderlich ist. Dies ermöglicht eine schnellere und effizientere Datenverarbeitung und macht den Pro und Edu zu einem zuverlässigen Partner für Ihre Projekte.
Ab der Edu-Version ist der Go2 programmierbar und eröffnet endlose Möglichkeiten für die Entwicklung und Erforschung eigener Robotikanwendungen. Der Go2 ist außerdem in der Lage, eine Stufenhöhe von bis zu 14 cm zu bewältigen. Dies macht es zu einem idealen Werkzeug für Forschung, Ausbildung und den Einstieg in die Welt der Robotik.
Der Go2 Edu wird mit einer Fernbedienung geliefert, die Ihnen eine einfache und intuitive Steuerung ermöglicht. Außerdem erhalten Sie eine Dockingstation mit beeindruckender Rechenleistung von 100 TOPS, die mit leistungsstarken KI-Algorithmen ausgestattet ist und Ihnen technischen Support bietet.
Go2 Edu ist mit einem leistungsstarken 15000 mAh-Akku ausgestattet, der ihm eine beeindruckende Laufzeit von bis zu 4 Stunden ermöglicht. Diese lange Betriebszeit ermöglicht es dem Roboter, längere Erkundungsmissionen durchzuführen und anspruchsvolle Aufgaben zu erledigen.
Go2 Edu Plus 3D LiDAR wird mit einem leistungsstarken Hesai XT16 3D LiDAR ausgeliefert. Dieser LiDAR-Sensor ermöglicht dem Roboter eine präzise dreidimensionale Wahrnehmung seiner Umgebung und ermöglicht so eine reibungslose Navigation und intelligente Hindernisvermeidung.
Modellvergleich
Air
Pro
Edu/Edu Plus
Abmessungen (stehend)
70 x 31 x 40 cm
70 x 31 x 40 cm
70 x 31 x 40 cm
Abmessungen (hockend)
76 x 31 x 20 cm
76 x 31 x 20 cm
76 x 31 x 20 cm
Material
Aluminiumlegierung + hochfester Kunststoff
Aluminiumlegierung + hochfester Kunststoff
Aluminiumlegierung + hochfester Kunststoff
Gewicht (mit Akku)
ca. 15 kg
ca. 15 kg
ca. 15 kg
Spannung
28~33,6 V
28~33,6 V
28~33,6 V
Spitzenleistung
ca. 3000 W
ca. 3000 W
ca. 3000 W
Nutzlast
≈7 kg (MAX ~ 10 kg)
≈8 kg (MAX ~ 10 kg)
≈8 kg (MAX ~ 12 kg)
Geschwindigkeit
0~2.5 m/s
0~3.5 m/s
0~3.7 m/s (MAX ~ 5 m/s)
Max. Steigfallhöhe
ca. 15 cm
ca. 16 cm
ca. 16 cm
Max. Steigwinkel
30°
40°
40°
Basisrechenleistung
N/A
8-Kern-Hochleistungs-CPU
8-Kern-Hochleistungs-CPU
Aluminium-Kniegelenkmotor
12 Satz
12 Satz
12 Satz
Gelenkinterne Schaltung (Knie)
✓
✓
✓
Joint Heat Pipe Kühler
✓
✓
✓
Bewegungsbereich
Körper: −48~48°
Körper: −48~48°
Körper: −48~48°
Oberschenkel: −200°~90°
Oberschenkel: −200°~90°
Oberschenkel: −200°~90°
Schaft: −156°~−48°
Schaft: −156°~−48°
Schaft: −156°~−48°
Max. Drehmoment
N/A
ca. 45 N.m
ca. 45 N.m
Super-Weitwinkel 3D-LiDAR
✓
✓
✓
Wireless Vektorpositionierungs-Tracking-Modul
N/A
✓
✓
HD-Weitwinkelkamera
✓
✓
✓
Fußende-Kraftsensor
N/A
N/A
✓
Grundlegende Aktion
✓
✓
✓
Auto-Skalierband
N/A
✓
N/A
Aktualisiertes intelligentes OTA
✓
✓
✓
RTT 2.0 Bildübertragung
✓
✓
✓
App Basic Fernsteuerung
✓
✓
✓
App-Daten anzeigen
✓
✓
✓
App Grafisches Programm
✓
✓
✓
Frontlampe (3 W)
✓
✓
✓
WiFi 6 mit Dualband
✓
✓
✓
Bluetooth 5.2/4.2/2.1
✓
✓
✓
4G-Modul
N/A
CN/GB
CN/GB
Sprachunktion
N/A
✓
✓
Musikwiedergabe
N/A
✓
✓
ISS 2.0 Intelligentes Side-Follow-System
N/A
✓
✓
Intelligente Erkennung und Vermeidung
✓
✓
✓
Sekundäre Entwicklung
N/A
N/A
✓
Manuelle Steuerung
Optional
Optional
✓
Modul mit hoher Rechenleistung
N/A
N/A
Edu: 40 TOPS Rechenleistung
Edu Plus: 100 TOPS Rechenleistung
NVIDIA Jetson Orin (optional)
Intelligente Batterie
Standard (8000 mAh)
Standard (8000 mAh)
Lange Lebensdauer (15000 mAh)
Akkulaufzeit
1-2 Stunden
1-2 Stunden
2-4 Stunden
Ladegerät
Standard (33,6 V, 3,5 A)
Standard (33,6 V, 3,5 A)
Schnellladung (33,6 V, 9 A)
Lieferumgang
1x Unitree Go2 Edu Plus
1x Hesai XT16 3D LiDAR
1x Unitree Go2 Fernbedienung
1x Unitree Go2 Akku (15000 mAh)
1x Unitree Dockingstation mit 100 TOPS Rechenleistung
Downloads
Documentation
iOS/Android apps
GitHub
Inhalt
Grundlagen
Kathodengegenkopplung – bei Endröhren durch eine Übertragerwicklung
Der Zwischenübertrager
Bauanleitungen
Eintakt-A-Endstufe mit 4x 6V6 – 6V6 quatroSE – ernsthafter Eintakter mit 16 W, nicht nur für hocheffiziente Lautsprecher
CD-Vorverstärker mit CD-Filter
Moderne Hybridendstufe
Die Kathedrale in der Streichholzschachtel – Elektronische Hallspirale
UKW-Mischteil – mit der Doppeltriode ECC2000 und der Triode/Pentode ECF80
Technik
In die Röhre geschaut – Computer-tomografische Bilder vom Röhreninneren
6L6GC – with best Regards from the United States of America
Röhrensockel
Info
Die Röhren-Sonderheft-Reihe hat die runde Zahl 10 erreicht
Nachruf Jan Jurco – Gründer von JJ Electronic
Buchbesprechung
Röhrendaten
Der Elektor Laserkop verwandelt die Elektor Sanduhr in eine Uhr, die die Zeit auf eine im Dunkeln leuchtende Folie statt auf Sand schreibt. Neben der Anzeige der Zeit können damit auch flüchtige Zeichnungen erstellt werden. Der 5-mW-Laserpointer mit einer Wellenlänge von 405 nm erzeugt leuchtend grüne Zeichnungen auf der im Dunkeln leuchtenden Folie. Um optimale Ergebnisse zu erzielen, verwenden Sie das Kit in einem schwach beleuchteten Raum. Achtung: Schauen Sie niemals direkt in den Laserstrahl!
Der Bausatz enthält alle notwendigen Komponenten, es ist jedoch das Anlöten von drei Drähten erforderlich.
Hinweis: Dieses Kit ist auch mit der originalen Arduino-basierten Sanduhr aus dem Jahr 2017 kompatibel. Weitere Einzelheiten finden Sie unter Elektor 1-2/2017 und Elektor 1-2/2018.
Der Raspberry Pi M.2 HAT+ ermöglicht den Anschluss von M.2-Peripheriegeräten wie NVMe-Laufwerken und KI-Beschleunigern an die PCIe 2.0-Schnittstelle des Raspberry Pi 5 und unterstützt eine schnelle Datenübertragung (bis zu 500 MB/s) zu und von NVMe-Laufwerken und anderem PCIe-Zubehör.
Raspberry Pi M.2 HAT+ unterstützt Geräte mit M.2 M Key Edge-Anschluss in den Formfaktoren 2230 und 2242. Es ist in der Lage, angeschlossene M.2-Geräte mit bis zu 3 A zu versorgen.
Features
Unterstützt Single-Lane-PCIe-2.0-Schnittstelle (500 MB/s Spitzenübertragungsrate)
Unterstützt Geräte, die den M.2 M Key Edge-Anschluss verwenden
Unterstützt Geräte mit dem Formfaktor 2230 oder 2242
Kann angeschlossene M.2-Geräte mit bis zu 3 A versorgen
Power- und Aktivitäts-LEDs
Lieferumfang
1x Raspberry Pi 5 M.2 HAT+
1x Flachbandkabel
1x GPIO Stacking-Header
4x Abstandshalter
8x Schrauben
Downloads
Datasheet
Schematics
Assembly instructions
DIE NEURONEN IN NEURONALEN NETZWERKEN VERSTEHEN Teil 1. Künstliche Neuronen
EMV-VOR-KONFORMITÄTSTESTER FÜR IHR PROJEKT MIT DC-VERSORGUNG Teil 1: Was ist eine Netznachbildung?
ELEKTRONISCHE LAST FÜR DC UND AC Bis zu 400 V und 10 A
ALLER ANFANG … ist gar nicht schwer!
NVIDIA JETSON NANO - BILDVERARBEITUNG FÜR EINSTEIGER Teil 1: Hard- und Software im Überblick
NETZTRANSFORMATOREN AUS DER NÄHE BETRACHTET Wie verhalten Sie sich beim Ein- und Ausschalten?
PICAN 3 – JA, DAS KÖNNEN WIR! CAN-Zusatzboard für Raspberry Pi 4
BALKONKRAFTWERK Selbst installiert = schnell amortisiert!
FOTOGRAFIEREN UND VIDEO-STREAMING MIT DEM RASPBERRY PI 4 Die High-Quality-Kamera des Raspberry Pi in der Praxis
VERWENDUNG VON DISPLAYS IN RASPBERRY-PI-PROJEKTEN Beispiel-Kapitel: Organische Leuchtdioden-Displays (OLED)
PARALLAX-PROPELLER 2 Teil 4: Senden von Strings
60 JAHRE ELEKTOR: SEPTEMBER-RENAISSANCE Der Plan, der Plan, ein leerer Wahn ...
ZUTRITT FÜR UNBEFUGE VERBOTEN ERWÜNSCHT In Friesland, wo die Röhren blühen ...
HYBRIDE SCHALTUNGEN Bemerkenswerte Bauteile
KOMPASSROSE MIT DEM GY-271 Oder, warum man mit dem Handy aufpassen muss…
KENNEN SIE IHREN FUSSABDRUCK Berechnen Sie die CO2-Bilanz Ihrer Elektronik
ESP32-VERBUNDENES THERMOSTAT Lagern Sie Ihren Wein bei der richtigen Temperatur!
MAGNETISCHE LEVITATION DIE DIGITALE ART Ein ESP32 Pico ersetzt den analogen Komparator
ULTIMATE ARDUINO UNO HARDWAREHANDBUCH Ein beispielhaftes Kapitel: Bootloader für den Haupt-Mikrocontroller
MICROPYTHON FÜR DEN ESP32 UND CO. Teil 2. Matrix-Displays einfach ansteuern
MADMACHINE SWIFTIO-KARTE Moderne Sprache trifft moderne Hardware
AUS DEM LEBEN GEGRIFFEN Eine elektronische On/Off-Beziehung
HEXADOKUS Sudoku für Elektroniker
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sind Sie noch kein Mitglied? Hier klicken!
electronica Fast Forward Start- & Scale-Up Awards Die Vorbereitungen laufen auf Hochtouren!
Bluetooth Low Energy mit dem ESP32-C3 und ESP32 Es muss nicht immer WLAN sein!
Bluetooth-LE-Sniffer Mit dem Makerdiary nRF52840 MDK USB-Dongle
Magischer RGB-LED-Würfel Hardware-Design rund um einen RP2040
Automatischer Ein-/Ausschalter für Lötpastenkompressor
Elektor - live und in Farbe Livestreams, Webinare und Kurse für Ingenieure und Maker
Fahrrad elektrifizieren E-Bike-Nachrüstkit in der Praxis
Aller Anfang ... Muss nicht schwer sein: Multiplikation von Spannungen
Aus dem Leben gegriffen Nebenbeschäftigungen
Teensy 4.0 – warum ist das Board so schnell? Oder: Geschwindigkeit ist keine Hexerei!
Simulation von Audio-Leistungsverstärkern mit TINA Der „Try-Before-You-Build“-Ansatz
LoRaWAN-Knoten im IoT Ein Beispiel-Kapitel: Die LoRaWAN-Module Dragino LHT65, LDS01 und LDS02
Projekt 2.0 Korrekturen, Updates und Leserbriefe
5G für mich allein Vollständige Kontrolle über 5G-Implementierungen in privaten Mobilfunknetzen
Infografik 7-8/2022
Wie lernt mein Gerät zu funken? Applikationen mit WiFi-Schnittstellen ausrüsten
Rheinturmuhr – Wecker de luxe
Audio-Spektrum-Analysator mit Dekatrons Eine neue Art, alte Röhren zu verwenden
Senden von Daten an Telegram Ein ESP32 und ein paar Bauteile besorgt den Job32 and a Few Parts
Fliege-Bandsperre für Audio-Messungen Besseres Messen durch Notch-Filterung
CO2-Messgerät auseinandergenommen Ist das Gerät für Ihre Projekte hackbar?
Spielereien mit PUTs Analoge Entwürfe mit dem programmierbaren Unijunction-Transistor
Ein runder Touchscreen für den Raspberry Pi HyperPixel 2.1 Round von Pimoroni
Fernwirken und die Erkennung von Verbindungsverlusten mit Hilfe von nRF24L01+ Modulen
Digitaler UKW-Empfänger Mit Arduino Nano und TEA5767
OLED-Display - aus SPI mach I²C
Zutritt für Unbefugte verboten! Ein Hobby geht nicht in die Rente!
Ein Jahrzehnt der Ethik in der Elektronik Tessel Renzenbrink sinniert über die digitale Gesellschaft
Hexadoku Sudoku für Elektroniker
Diese Ausgabe steht allen GOLD- und GREEN-Mitgliedern auf der ElektorMagazine-Website zum Download bereit!
Sind Sie noch kein Mitglied? Hier klicken!
Raspberry Pi Pico als Spektrum-Analyser FFTs auf preiswerter Hardware-Basis
±40 V linearer Spannungsregler Eine alternative Stromversorgung für die Fortissimo-100-Endstufe ... und andere!
Drahtlose MCU-Kommunikation flexibel gemacht EEPROM eröffnet Netzwerk-Perspektiven für drahtlose MCUs
5.000 € zu gewinnen! Machen Sie mit beim STM32 Wireless Innovation Design Contest!
2023: Odyssee in der KI Loslegen mit dem Code-Interpreter von ChatGPT
LoRa, ein Schweizer Taschenmesser Teil 1: Das LoRa-Protokoll und seine Vorteile
Einstellbare Stromsenke mit integriertem Taktgeber Zum Testen von Netzteilen, Spannungswandlern und Batterien
Zwei neue Arduino UNO R4 Boards: Minima und WiFi
Logarithmische Potentiometer Sie sind exponentiell!
Motortreiber-Breakout-Board Ein BoB für einen 5-A-Treiber für DC-Motoren mit einer Größe von 3×3 mm
Aus dem Leben gegriffen Gefährliche Elektronik
Ist Mobilfunk die energiesparendste Option für das IoT? LTE-M und NB-IoT: Energieanforderungen in LPWAN-Implementierungen
Kabellose Kommunikation in IoT-Systemen mit MKR Modulen von Arduino Kommunikationsstandards des Arduino-Moduls für IoT
AC-Verluste in magnetischen Bauteilen Erhalten Sie heiße Induktivitäten!
Messungen für eine optimale Cloud-Implementierung
Matter-Implementierung: Was braucht es, um Matter-Geräte einzusetzen?
Neue 2,4 GHz-Funkeinheiten von Circuit Design Prädestiniert für Fernsteuerung und Überwachung
PIC o'Clock – am Puls der Zeit Design eines SDR-Zeitzeichen-Empfängers
Sorgfaltspflichtrichtlinie „Weiter so“ ist nicht genug
Aller Anfang... Ist gar nicht schwer: Spannungsverstärkung
Infraschall-Rekorder mit dem Arduino Pro Mini Ein Beispielprojekt aus dem Elektor-Buch „Arduino & Co.“
Cloud-basierter Energiezähler Mit ESP32-Modul und PZEM-004T-Spannungs-/Stromsensor
Eine Anleitung zur Bare-Metal-Programmierung Teil 2: Exaktes Timing, UART und Debugging
Technische Spezifikationen
Zwei ARM Cortex-M0+ mit 133 MHz
264 kB On-Chip-SRAM in sechs unabhängigen Bänken
Unterstützung für bis zu 16 MB Off-Chip-Flash-Speicher über dedizierten QSPI-Bus
DMA-Steuerung
Vollständig angeschlossene AHB-Crossbar
Interpolator- und Integer-Teiler-Peripherie
On-Chip programmierbarer LDO zur Erzeugung der Kernspannung
2x On-Chip-PLLs zur Erzeugung von USB- und Kerntakten
30x GPIO-Pins, von denen 4 als Analogeingänge verwendet werden können
Peripheriegeräte
2x UARTs
2x SPI-Steuerungen
2x I²C-Steuerungen
16x PWM-Kanäle
USB 1.1-Controller und PHY, mit Host- und Geräteunterstützung
8x PIO-Zustandsmaschinen
Was Sie erhalten
10x nackte RP2040-Chips
Offizielles Micro-HDMI auf Standard-HDMI-Kabel für Raspberry Pi 4 und 5 (schwarz, 1 m)
19-poliges HDMI Typ D(M) auf 19-poliges HDMI Typ A(M)
1 m Kabel (schwarz)
Vernickelte Stecker
4Kp60-konform
RoHS-konform
3 Mohm 300 VDC Isolierung, hält 300 VDC für 0,1s stand
,
von Clemens Valens
Review: Das Andonstar AD249S-M Digitalmikroskop vergrößert bis zu 2040-fach
Das Andonstar AD249S-M ist ein digitales Mikroskop mit einem 10-Zoll-Display und einem Vergrößerungsfaktor von bis zu 2040-fach. Es wird mit drei Objektiven geliefert, die drei...
,
von Clemens Valens
Arduino Alvik, ein Wendepunkt in der STE(A)M-Ausbildung? (Review)
Eine Möglichkeit, die Ingenieure von morgen zu finden und hervorzubringen, besteht darin, unter unseren Kindern zu suchen. Die Idee besteht darin, ihnen unterhaltsame und einfach...